翻訳と辞書 |
Calderón–Zygmund lemma : ウィキペディア英語版 | Calderón–Zygmund lemma In mathematics, the Calderón–Zygmund lemma is a fundamental result in Fourier analysis, harmonic analysis, and singular integrals. It is named for the mathematicians Alberto Calderón and Antoni Zygmund. Given an integrable function , where denotes Euclidean space and denotes the complex numbers, the lemma gives a precise way of partitioning into two sets: one where is essentially small; the other a countable collection of cubes where is essentially large, but where some control of the function is retained. This leads to the associated Calderón–Zygmund decomposition of , wherein is written as the sum of "good" and "bad" functions, using the above sets. ==Covering lemma==
Let be integrable and be a positive constant. Then there exists an open set such that: :(1) is a disjoint union of open cubes, , such that for each , :: :(2) almost everywhere in the complement of .
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Calderón–Zygmund lemma」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|